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Abstract

Gridded datasets derived through interpolationatiean data have a number of potential
inaccuracies and errors. These errors can belintedl either by the propagation of errors in the
station data into derived gridded data or by litiotas in the ability of the interpolation method
to estimate grid values from the underlying statietwork. RecentlyHaylock et a[2008]
reported on the development of a new high-resatugitcdded dataset of daily climate over
Europe (termed E-OBS). E-OBS is based on the lasyeslable pan-European dataset and the
interpolation methods used were chosen after daggéluation of a number of alternatives, yet
the dataset will inevitably have errors and undetiess. In this paper we assess the E-OBS

dataset with respect to: 1) homogeneity of thedgritidata; 2) evaluation of inaccuracies arising
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from available network density, through comparigeti existing datasets that have been
developed with much denser station networks; antde8accuracy of the estimates of

interpolation uncertainty that are provided as paE&-OBS.

We find many inhomogeneities in the gridded dagd &éne primarily caused by inhomogeneities
in the underlying station data. In the compariebaxisting data with E-OBS we find that while
correlations overall are high, relative differenageprecipitation are large, and usually biased
towards lower values in E-OBS. From the analybihi® interpolation uncertainties provided as
part of E-OBS, we conclude that the interpolatitamdard deviation provided with the data
significantly underestimates the true interpolatoror when cross-validated using station data,
and therefore will similarly underestimate the iptdation error in the gridded E-OBS data.
While E-OBS represents a valuable new resourcelifoate research in Europe, users of the

data need to be aware of the limitations in thaskttand use the data appropriately.

1. Introduction

Gridded climate data derived from meteorologicatish measurements underpin a wide range
of applications and research in climate scienaguding evaluation of global and regional
climate models, the construction of bias-corredi@date change scenarios and driving many
applications in climate impacts assessmeatg/[ock et al. 2008]. Increasingly, there has been
a need for gridded data at higher spatial and teahpesolutions, as the focus of climate change
research has shifted from global to regional acdllscales. Recentlidaylock et al[2008]
described the development of the first high-resotugridded dataset of daily climate over
Europe (termed E-OBS), as part of the EU funded EMBLES project. The dataset,

comprising daily mean, minimum and maximum tempeeaand precipitation, was constructed
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through interpolation of the most complete collectof station data over wider Europédk

and Klein Tank2008]. The data are available on four diffefe@M grids (0.25 and 0.5 degree
regular lat-lon and 0.22 and 0.44 degree rotatdd)@md cover the period 1950-2006.
Additionally, estimates of interpolation uncertastare included as part of the datakktylock

et al, 2008].

Gridded datasets derived through interpolationatiean data have a number of potential
inaccuracies and errors. Errors in the underlgiiagion data can be propagated into the gridded
data; typical sources of error include incorreatish location information, individual erroneous
values or non-climatic breaks (inhomogeneitieghanstation time series. A second source of
uncertainty relates to the ability of the intergimia method to estimate grid values from the
underlying station network. In general, interpataccuracy decreases as the network density
decreases, is less accurate for variables with neniable spatial characteristics (e.qg.
precipitation) and degrades in areas of compleaite(e.g. mountain areas). While E-OBS is
based on the largest available pan-European datadeahe interpolation methods used were
chosen after careful evaluation of a number ofadtives Hofstra et al, 2008], the dataset will

inevitably have errors and uncertainties.

The aim of this paper is to assess the E-OBS datatberespect to some of the potential errors
that may be present. Users can then familiarissgelves with the strengths and weaknesses of
the data and use them responsibly. We have chibesmfeatures of E-OBS to analyse in this
paper: 1) homogeneity of the gridded data; 2) ineawes due to the underlying station network
density, though comparison with existing datadwss have been developed with much denser
station networks; and 3) the accuracy of the esémaf interpolation uncertainty that are

provided as part of E-OBS.



73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

Long-term station data are often influenced by olimatic factors, such as changes in station
location or environment, instruments and obserpiragtices. These so-called inhomogeneities
can often lead to misinterpretations of the clinddta analysedPleterson et al.1998]. The
station data used for E-OBS are not fully homogahisindividual station series may have been
homogenised by the original custodians of eaclesgbiut the series provided by partner
organisations have been used directly, meaninghpally inhomogeneous stations may be
contributing to the interpolated grids. As statdemsity strongly influences the interpolation
[Hofstra et al, 2008], E-OBS was constructed using mpnotentiallyinhomogeneous stations,
as their exclusion would degrade the station nétwlensity and hence accuracy of the
interpolation. In addition, several studies expldiat, for area averages of relatively large areas
inhomogeneities balance out during interpolatidaifet al, 1997;New 1999;Peterson et a/.
1998]. However, that may not be the case for #@BS high-resolution grids. Therefore, the

first out of three topics tested is the homogeneitihe dataset.

The second topic is a comparison with other grididsets that have been developed with
much denser station networks. These datasetvailalde, in the case of precipitation, for long
periods for the UK and the Alps and for the pei@atober 1999 — December 2000 for Europe as
a whole. For temperature, unfortunately, we havg been able to secure data for the UK.
Datasets developed with denser station networkasmemed to be a better approximation of the
true area-averages. So if the E-OBS gridded dapasduces grid area-averages that are close to
those calculated from the higher quality grids, FR@®BS dataset can be deemed to be a

reasonable representation of the true area-averatped values.
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Because of the inevitable interpolation uncertasjtthe E-OBS dataset is provided with
information on the interpolation uncertainty fockayrid box and each dakfylock et al.

2008]. E-OBS interpolation uncertainty is derilmdcombining the Bayesian standard error
estimates of the monthly climatologyutchinson 1995] and the interpolation standard
deviation for daily anomalie'amamotp2000] (see section 5 for more detail). Here we
concentrate on the interpolation standard erramases, and evaluate the accuracy of the
estimates through cross-validation against stataia. This represents the first evaluation of the

Yamamotd2000] standard error method, which has to datg loeen applied to geological data.

The remainder of the paper is structured as follo#sction 2 provides a more detailed
description of the E-OBS dataset, including theaslyihg station data and the interpolation and
gridding methodology. We then cover each of tliedtevaluations in turn: inhomogeneities
(Section 3), comparison against regional griddgds#ds based on denser station networks
(Section 4) and evaluation of the interpolatiomdtad error estimates (Section 5). We conclude
with a summary of results and a discussion of ty@ications of our assessment for use of the

E-OBS dataset.

2. The E-OBS dataset

The E-OBS gridded dataset is derived through inlatpn of the ECA&D (European Climate
Assessment and Data) station data describ&tbkand Klein Tank2008]. The station dataset
comprises a network of 2316 stations, with the égglstation density in Ireland, the Netherlands
and Switzerland, and lowest density in Spain, NarihAfrica, the Balkans and Northern
Scandinavia. The number of stations used forritegpolation differs through time and by

variable. The full period of record used for ip@iation is 1950 — 2006 , but the period 1961 —
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1990 has the highest density. At any particutaetithere are more precipitation than
temperature stations. Inhomogeneities in thecstdiine-series have been flagged, but

potentially inhomogeneous stations are used foirtteepolation, for reasons noted above.

The E-OBS dataset is derived through a three giampessiaylock et al. 2008]. Monthly
means (totals) of temperature (precipitation) ast interpolated to a 0.1 degree latitude by
longitude grid using three-dimensional (latitudmditude, elevation) thin plate splines. Daily
anomalies, defined as the departure from the mpntlelan (total) temperature (precipitation),
are interpolated to the same 0.1 degree grid, ambimed with the monthly mean grid. For
temperature, daily anomalies are interpolated usiiging with elevation as an external drift
factor. For precipitation indicator kriging is firssed, where the state (wet/dry) of precipitation
is first interpolated, after which the magnitudévest’ 0.1 degree grid points is interpolated
using universal kriging. Finally, the 0.1 degreénts are used to compute area-average values
at the four E-OBS grid resolutions (0.25 and 0.§rde regular latitude-longitude grid and 0.22
and 0.44 degree lat-long rotated-pole grids).his paper, we use the 0.25 degree regular
latitude-longitude grid for further evaluation, r@sults for the other grids are essentially the

same.

Standard error estimates that accompany the griddiedare derived through combination of the
individual standard error estimates for monthly dady interpolations. Standard error for the
monthly mean or total are the Bayesian standant estimates, as available in the ANUSPLIN
package used for the spline interpolatiblufchinson 1995;Wahba 1983]. Error estimates for
daily anomalies have been calculated using the adgthoposed by amamotd2000] (see

Section 5). Both standard error estimates areitzdtd at the 0.1 degree master grid. For
temperature monthly and daily uncertainties arelsoed taking the square root of the sum of
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the squares of the two uncertainties. For preatipit the relative uncertainty of the daily tosl i
the square root of the sum of the squares of théve uncertainty of the monthly total and the
relative uncertainty of the daily proportion of ntllly total precipitation. Uncertainties at the

0.1 degree grid have been averaged over the tgngstallowing for spatial autocorrelation.
Details on the interpolation methods and how welemented them as well as on the calculation

of the uncertainties are availableHaylocket al.[2008].

3. Homogeneity assessment

3.1. Homogeneity testing

To analyse the influence of inhomogeneities in@badiata on gridded time-series and to inform
the user about possible inhomogeneous areas whtbidataset, we apply a homogeneity test to
the gridded dataset and compare results to the &shor station data. Numerous tests could
be used [e.gReterson et a].1998], but for this study we use the Wijngaardhuod [Wijngaard

et al, 2003], which is the same test that was appligledECA&D station data used to construct
the E-OBS, where 39% of the precipitation and 25% e temperature station series were found

to be potentially homogeneous over the period 298006 Klok and Klein Tank2008].

The Wijngaard method is an absolute test, as & do¢ use a supposedly homogeneous
reference series. This was appropriate for theimerof the ECA&D dataset before the
ENSEMBLES project started, because of its sparseank [Wijngaard et al. 2003]. It
comprises four homogeneity tests: the standard aldnomogeneity test (SNHT) for a single
break Plexanderssonl986], the Buishand range teBujshand 1981], the Pettitt tesPttitt,

1979] and the Von Neumann te¥ion Neumannl941]. These location-specific tests have
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different characteristics; for example, the SNH3t 8 more sensitive to inhomogeneities earlier
or later in the time-series, whereas the BuishamdRettitt tests work better for breaks near the
middle of the series. If zero or one of the telstiects a break at the 1% significance level the
time-series is classified ‘useful’; if a break mstelcted by two tests the series is classified

‘doubtful” and if three or four tests find a bredle series is classified ‘suspect’.

For precipitation the annual wet day count is usedhe analysis of breaks, as this statistic
generally has lower variance than total preciptatenabling a better signal to noise ratio for
significance testing. For temperature, the anmedn diurnal temperature range (MmDTR) and
the annual mean of the absolute day-to-day diffsgeof DTR (VDTR) are used for
homogeneity detection. DTR is used in preferengag¢an, maximum or minimum temperature,
as it has been shown that tests on DTR are mosgtisenbreaks that are mainly radiation
related have different effects on minimum and maximtemperature and are, therefore, only
weakly apparent in these variables, but do apdearlg in DTR. As the homogeneity tests are
applied to both mDTR and vDTR, a temperature stasalassified according to the worst

outcome for the two variables.

We apply the Wijngaard tests to both station ar@HES gridded data and compare the results.
We calculate the annual wet day count, MDTR andREdr each year if for each month no
more than 20% of the data are missing. If less 8G%26 of the years in the period 1950-2006 are
present, the homogeneity test for that statiorrior lgpx is not performed, although these stations
may have been used for the interpolativvijngaard et al.[2003] concluded that a 1 mm
threshold should be applied to define a wet daybge otherwise too many breaks were

detected, and we accordingly adopt this threshold.
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3.2. Results and discussion

Figure 1 shows the stations and grid boxes thgp@tentially useful (green), doubtful (blue) or
suspect (red), according the Wijngaard classificatiFor precipitation there are more many
more useful stations and grid boxes than suspexs. oBuspect areas are mainly located in
Northern Norway, Scotland, Italy, the Balkan, paft€entral Europe and in Northern Russia.
For temperature most of Europe has a statistigaifsgant inhomogeneity at some point in the
gridded data, indicated by breaks in mDTR or vD©Rhoth). However, if we only look at
mDTR there are major differences (see Figure-Sthersupplementary material), with many
more potential homogeneities in coastal areas, witiaining areas of central France, UK,
Netherlands, parts of Spain and major parts of idkrdNorthern Russia, Finland, southern
Sweden, Czech Republic, Baltic States and Formego3lavia classified as useful in that case.
That we find breaks in mDTR along the coast mag)Xy@ained by a reduced variability in those
areas due to the influence of the sea, makingsiee#o detect a break in mDTR.
Inhomogeneities are much more widespread in vDTiR no clear difference between coastal

and non-coastal areas.

Figure 1 also shows that the areas that have tls¢ suspect stations often also have suspect
grids, but sometimes even one suspect station nflagnce a whole area. An example of the
latter is precipitation in northern Sweden wherly @ame station is suspect, but has an influence
over many grid boxes. Conversely, some statiome hasmaller influence on the area, as, for
example, in Russia where many stations are inhonemges, but only small areas are influenced.
Many stations in this area have breaks in diffeyeatrs and these may be cancelled out in the
gridded values. For temperature, inhomogeneotisssaare present across the whole of

Europe, which is reflected in the inhomogeneitiethe gridded data.



218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

In the case of precipitation many more areas ofjtits are classified as potentially useful than
for temperature (78% for the wet day count veri¥% 4or mDTR and 28% for vDTR for the
grids, and 89% versus 49% and 56% for the statemes,Table 1), which is related to the fact
that the homogeneity test is less sensitive fomteeday count. The percentage of stations that
are qualified useful is higher in this study tharihie study oKlok and Klein Tank2008] (89%

for the wet day count in this study vs. 39% in Kiek and Klein Tanlstudy and 49% vs. 25%

for temperature). The reason for this is mostyiklee time period used; we use the additional
first 11 years of the data, in which fewer statibase full data coverage. When there are fewer
stations available, also fewer breaks are detenttte data. mDTR has a much higher
percentage of useful grids than vDTR, whereas vibaRa higher percentage of useful stations
than mDTR. This indicates that in the station ksegre more strongly manifested in the mean
of the data, whereas in the grids breaks are mioyegly manifested in the standard deviation.
That may be due to the fact that the variabilityhef grid values are dependent on the station
density of the network used for the interpolatiow #he distance to the grid centkofstra et

al., 2009]. A station network that does not haversstant density in time may introduce

inhomogeneities.

We also assessed the distribution of breaks in éintecompare these between gridded and
station data (Figure 2). As expected, the SNHEastmore inhomogeneities near the beginning
and end of the period than the Buishand and Pegtsits. SNHT also detects more breaks for any
one variable than the other tests (Table 1). Feirday count the inhomogeneity in 1965
detected in the station data by the Pettitt tealss visible in the gridded data. Breaks in the
1975-1985 period in the station data are mainlecéfd in the gridded data close to 1980. For
mMDTR the breaks in station and gridded data dshotv a specific pattern. However, where for
vDTR the largest inhomogeneities in the statiom@dae found around 1970, the largest breaks in

10



243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

the gridded data are found in the early 1990s. |atter breaks may be due to a declining station
density around this time. We investigated whetheomogeneities could be determined on a
decadal basis, by analysing each of the six decsajemately, but the Wijngaard method is not
sensitive enough to find any inhomogeneities is¢hehorter periods at the 0.01 significance

level.

We also divided the calculated potential breaksafothree methods of the 57 year period into
six decadal groups and assess the inhomogengiaiéally (see Figures S2-S5 in supplementary
material). We can conclude, for example for preaijpn, that most Italian and former
Yugoslavian stations around the Adriatic Sea withreak have this break in the period 1980-
1990 for all three tests; these breaks are algoagated through into the gridded data. For
precipitation, for all three tests in general, tindng of the breaks in the gridded and statioradat
compares quite well. For temperature, the agreemeiming of breaks between the station and
gridded data is smaller. For example, for vDTRrgé part of Russia and the Ukraine has the
largest significant break between 1990 and 200@lfdhree tests, whereas most stations in this
area suggest the largest break exists betweenar@60980. This indicates that there may be
multiple breaks in the station time-series of whicte becomes more important in the gridded

data.

The inhomogeneities within the gridded data areoirtgmt to keep in mind during any use of the
dataset. For example, when studying trends ird#te, the results within the areas that are
suspect may not be meaningful. For those who regunore detail on the inhomogeneities in the
gridded data, we have prepared a file that inclufdegprecipitation and temperature, the
potential classification of homogeneity of eachb0d2gree grid box (useful, doubtful, suspect)
and, for each of the four homogeneity tests, whedhstatistical significant inhomogeneity has
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been detected and if so the year of the largeskbré&he file can be downloaded from the E-

OBS download site (http://eca.knmi.nl/download/eniskes/ensembles.php).

4. Comparison with existing datasets

4.1. Existing datasets

In the second test of the dataset we compare E10BSisting datasets developed with much
denser station networks. Since station densigsry important factor in the interpolation and
the interpolation errors are smaller in areas wittense station networkpfstra et al, 2008],

these existing datasets are deemed close to tle dreal average, and provide a useful
reference against which to judge the E-OBS dataBee three existing datasets used are the UK,
Alps and ELDAS datasets. ELDAS and the Alps dasasely comprise precipitation data. The
UK dataset contains all four variables. We weralle to find or not allowed access to

additional datasets in other regions.

4.1.1. UK

The UK dataset, supplied by the UK Met Office, coisgs a 5x5 km equal-area grid, covering
the period 1958 — 2002 for precipitation, 1995 92@r minimum and maximum temperature
and 1995 — 2006 for mean temperatiterfy and Hollis 2005]. This dataset is compiled from
a station network of 4400 stations for precipitatamd 540 stations for temperature using
multiple regression with geographic factors asitidependent variables, followed by inverse
distance weighting (IDW) of the residuals. In c@mgon, the ECA&D station network had 138
stations within this area, of which most had 78%8of the data available for all variables. To

allow comparison with the E-OBS interpolationsglt-points within each 0.25 degree grid

12



290 used for the interpolation have been averaged.aMtecompare this dataset to ELDAS (see

291 Section 4.1.3), for which a 1 degree grid is used.

292 4.1.2. Alps

293 The Alps dataset, comprising precipitation onlyamsupdated version of the climatology and
294 daily data described yrei and Schar [1998hndSchwarb[2001], described in more detail by
295 Hofstra et al.[2008]. The data are available on a 0.25 by O07ld&yree grid and cover the

296 period 1966 — 1999. For the period 1966 — 197fethes no data available over Austria and
297 after 1990 there are data quality issues with nwdrilge Italian stations, so in our comparison,
298 we use the period 1966-1990, except for Austriggnahhe period 1971 — 1990 has been used.
299 The dataset is constructed through addition ofydmlbmalies to the long term climatological
300 mean. Anomalies were interpolated from statiom daing a modified version of the Shepard
301 algorithm [an ADW techniqudsrei and Schar1998;Shepard 1984] and the long-term

302 climatology was derived with a local regressionrapph [PRISMDaly et al, 2002] specifically
303 calibrated for the Alpsgchwarb et a).2001]. The dataset is based on over 6500 stegmords.
304 In comparison, the E-OBS station network had 34fists available within this area, with

305 majority having over 70% data presence. To allomgarison with E-OBS on a common grid,

306 both datasets have been averaged to a 0.25 x 6g28edgrid.

307 4.1.3. ELDAS

308 The ELDAS daily precipitation dataset was developg&ubel et al[2004] for the

309 Development of a European Land Data Assimilatiost&y to predict Floods and Droughts

310 (ELDAS) project. It covers Central and Northerrr@&pe at 0.2 degree latitude by longitude and
311 covers the relatively short period of October 1899ecember 2000. Some 21,600 stations
312 were used for the interpolation, compared to 2@O@EFOBS over the ELDAS domain. Station

313 density is reasonably homogeneous, but areas suebrtugal, Belgium, Italy, the Balkan,
13
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Czech Republic, the Baltic states and Scandinaawa la lower density than Spain, France, the
Netherlands, the UK, Denmark, Germany, Poland, Zn@nd and Austria. Interpolation was
done via the Precipitation Correction and Analysetshod Rubel and Hantel2001]; this
comprises a dynamical bias correction combined witlordinary block kriging algorithm. To
enable comparison, we averaged ELDAS and E-OBStoranon 1 degree latitude by

longitude grid.

4.2. Comparison

We compare E-OBS to the high-quality grids using Bkill scores for temperature and six for
precipitation. We calculate the skill scores fibidata together to obtain overall scores, and also
on a grid-point basis to explore the spatial patén difference between grids. We use the mean
absolute error (MAE), root mean squared error (RM8&mpound relative error (CRE) and
Pearson correlation (R) to assess temperaturenanate¢cipitation amount. The Critical Success
Index (CSI) and Percent Correct (PC) are useduttygtrecipitation state (wet or dry, where a
wet day is defined as having precipitat®0.5 mm). The skill scores are described in detail
elsewhereHlofstra et al, 2008], but we include an explanation of eacheaothe

supplementary material. For precipitation we a@sade the MAE and RMSE by the mean
precipitation for the grids in order to remove thi#uence of the amount of precipitation on

these two skill scores in each grid.

We note that the high-quality data are not trualaaeerages. However, given they are based on
order of magnitude denser networks than E-OBS,xpea them to be subject to smaller
interpolation errors. Thus we can only quantifffefiénces between the datasets, which provide a
qualitative indication of potential errors in E-OB&it should not be interpreted as errors of the

dataset.
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4.3. Results and discussion

Table 2 provides an overview of the results ofgkiél scores, calculated ‘globally’ for each grid
pairing, as well as for each standard seasonirgitsight, the datasets compare very well:
correlations, CSls and PCs are high (for exampkgtobal correlation coefficient for
temperature is approximately 0.99 and for predijpita0.85-0.92), the CREs are small and
RMSEs are fairly small (for example, CRE is 0.0240and 0.18-0.36 for temperature and
precipitation). However the mean differences betweatasets are quite large. RMSE is 0.7-0.9
for temperature and 2.2-2.4 for precipitation, afram the Alps where it is larger, at 5.8. MAE
shows similar, but smaller differences. For priatpn, the relative RMSE varies between 0.73
(UK) to 1.3 over the Alps. Relative differenceween E-OBS precipitation and the other
datasets are smaller in winter (UK and ALPS) arntdran (ELDAS). The main reason for larger
differences between the datasets in summer isrtlsatmmer precipitation is mainly convective
rather than frontal. During this season the cati@h between stations is lower than in the other
seasons. Interpolation with a larger station dgngill then produce better areal averages than
interpolation using a less dense network. For nae@hminimum temperature the datasets are

closer to each other in spring, whereas they coenpetter in winter for maximum temperature.

Figure 3 presents the results for precipitatiortiaffp. E-OBS compares best to the UK dataset,
as does the ELDAS dataset, suggesting that ovaykhE-OBS is fairly reliable. The

differences are generally larger over the Westooftl&nd, where topography is an important
contributing factor to spatial variability in raadf. E-OBS does not agree as well with the Alps
dataset, where the topographic complexity meangheasparse E-OBS network does not result
in the same gridded data as the denser Alps nepatihiough absolute errors are large because

precipitation is on average higher in the Alpsatige errors are also larger than in the UK.
15
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Similarly, E-OBS compares poorly to ELDAS over Namgwdue to the greater station density for
the ELDAS dataset in this topographically complesaa Finally, the E-OBS precipitation
dataset has virtually no stations available infmem Africa, which causes the poor agreement in
this area. Figure 4 shows the spatial patterrkibffer temperature over the UK. In general, the
agreement is good for all three temperature elesnddifferences are greatest over Scotland
compared to the rest of the UK. That may be altre$the higher station density of the UK
network, which may have had more station data ablglat higher elevations in Scotland.
Differences in agreement between the grids arergiyéarger than differences between the

four seasons.

We also evaluate whether E-OBS shows a bias compaithe high density datasets, by
counting the frequency of days where E-OBS is ntlos@+ 0.1 standard deviations from the
high density dataset (Figure 5). For precipitatie&¥OBS shows a negative bias at nearly all grid
boxes relative to the Alps and ELDAS datasets. @amed the ELDAS dataset, E-OBS is
positively biased over parts of Norway and at scatt locations elsewhere in Europe. Over the
UK, E-OBS rainfall tends to be negatively biase@ieas of higher rainfall in the west, apart
from Northern Ireland where there is a positivesljend also compared to ELDAS). For
temperature there are areas with a positive (taowvand a negative (too cold) bias. One
striking feature is that areas such as Devon/Cdiramd Southern Wales, that are too warm for
minimum temperature, are often too cold for maximemperature. The bias for temperature is

not consistent over the whole of the UK.

In Figure 6 we assess the difference between E-@®BShe high density datasets across the
distribution of precipitation amount and temperatuFor this we calculate for each grid deciles

of temperature and precipitation (for all wet day#je then calculate for each day and each grid
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the absolute difference between the E-OBS andttier datasets and plot the medidf, Z8",

75" and 98' percentiles of these differences in each decilgu(e 6). While precipitation is
biased towards smaller values in all deciles ofd#aset, the bias is larger for more extreme
precipitation. In the comparison of the™decile for the Alps the error between the two st
can be as high as 16 mm, which is the median oéfer when E-OBS is compared to the Alps
dataset (see median of 9"1@ecile of E-OBS versus Alps comparison in Figure Bhe reason
for this relates to the much higher station densitye other datasets. For E-OBS, interpolation
typically occurs from more distant stations comparethe high density datasets; as extreme
precipitation events are usually more localisedytwill be over-smoothed if a sparse network is
used. For temperature, differences in error andai for all deciles, with an average of around
0.5 °C. The errors are slightly larger in tfiedEcile for minimum temperature and thé'10
decile for maximum temperature, which means thexietlare slightly larger errors in the
extremes, but overall extreme temperature everdtbaguite well represented [see also the

discussion of extremes haylock et al. 2008].

We can conclude that the E-OBS shows quite larfiereinces to the existing datasets based on
higher density station network. While correlatiaverall, and on a grid-by-grid basis, are high,
relative differences in precipitation are largeg aisually biased towards an underestimation. For
temperature (UK only), mean absolute differencesaaiteast 0.5 °C. The fact that the ELDAS
precipitation dataset shows a much better spatétimo the UK dataset than E-OBS underlines
the fact that E-OBS is fundamentally limited byutsderlying station network. As the E-OBS
network density over the UK is above average coegpar density over the rest of Europe, we
can conclude that this issue is likely to be pameaacross much of the E-OBS domain.
Assessment of the agreement with existing datésetd| deciles of precipitation and
temperature shows that the errors are larger iexbremes than in the more average amounts of
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precipitation or temperature. There seem to baifsignt problems with the underestimation of
precipitation extremes. Comparability is much leigfor temperature than for precipitation, due

to the fact that temperature is a continuous vériab opposed to precipitation.

5. Uncertainty assessment

5.1. Calculation of uncertainties

Brohan et al[2006] give an overview of all sources of all knoaumd calculable uncertainty in
their HadCRUT3 gridded global monthly temperatusitadet. Three groups of uncertainties
have been identified: 1) station error, 2) sampéngr and 3) bias error. Station error includes
errors made during thermometer reading, possiljlesadent of homogeneities, calculation of
the station normal, and processing of raw datae S&mpling error is the difference between the
‘true’ spatial average and the interpolated esémditt depends on, amongst others, the number
of stations in the grid box, the distribution oble stations and on the variability of the climate
in the grid box. The gridding method usedBrphan et al[2006] is a simple area average of
the stations within a grid, which is different frahe kriging method that we use, but the
sampling error of our gridding method will dependtbe same factors. Two sources of bias
error are summarised IBplland et al.[2001]: urbanization effectddnes et a).1990] and
thermometer exposure changBaiker, 1994]. For precipitation a similar list of soaescof
uncertainty can be made. Here we focus on samptirog as it is expected to be the largest
contributor to overall error. The objective hes¢a evaluate the accuracy of the estimates of
interpolation sampling error for daily anomaliegdisn E-OBS. As explained in the

introduction, these daily errors are estimatedgitie method proposed bMamamotd2000].
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436 Yamamotd2000] estimates the so-called ‘interpolation dtd deviation’ at each grid point as
437 the weighted average of the squared differencegdset station and interpolated values as
438 follows:

439

a0 s, :ng[z(xi)—z*(xo)r n

441

442  where x (i =1,n) are the locations of the stations usedHe interpolation angl are the weights
443 used in the kriging interpolation and z are theeobsd values at the i stations used for the

444  interpolation (¥ and z is the interpolated value at the location forititerpolation (x).

445

446 Yamamotd2000] compared his interpolation standard deeratd the kriging standard

447 deviation and cross validation error. The krigitgndard deviation is a standard by-product of
448 kriging and used widely as a measure of reliabdityhe kriging procedure. The interpolation
449 standard deviation has much larger correlation witiss-validation error than with the kriging
450 standard deviation. The reason for that is thektiging standard deviation is not a true

451 estimate of uncertaintypurnel and RossiLl989;Monteira da Rocha and Yamampf8000], as
452 it cannot properly measure local data disperstamjamoto2000].

453

454  As we do not have the true grid values for evatimtive adopt station cross-validation to test
455 the accuracy of thEamamot¢2000] interpolation standard deviation. We estarthe daily

456 anomaly at each station in the ECA&D dataset usedhstruct E-OBS, using the same

457 interpolation approach used for E-OBS gridded datgerpolation standard deviation is

458 calculated using equation [1] above and cross-atbd error as the absolute difference between

459 the interpolated station value and the observeakeval
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cve, =|z* (%,) - z(x, ) [2]

We next transform the interpolation standard demiatinto 95% confidence intervals by
multiplication with 1.96 (assuming a normal distition) and addition to and subtraction from
the interpolated daily values for each station. tia count the number of times the observed
station value falls within the 95% confidence intdrfor the interpolated value, with the
expectation that if the confidence interval is aouate estimate of interpolation uncertainty we
would expect the station value to fall outsidedbafidence interval approximately 5% of the

time.

5.2. Results and discussion

We first compare the cross-validation error (CVEY enterpolation standard deviation (ISD)
through scatter plots. Results are similar foteathperature variables, so we only show figures

for precipitation and minimum temperature.

Correlation between the CVE and ISD for both terapee and precipitation is positive (Figure
7). The relationship between CVE and ISD is stesrigr precipitation (r=0.57) than minimum
temperature (r=0.33), which provides confidence tiha spatial distribution of ISD will reflect
the spatial variability in interpolation error. dlhelationship is also closer to one-to-one for

precipitation, whereas for temperature, 1SD tendset too large at smaller CVE and vice versa.

However, a better test of the accuracy of the ISithé count of the percentage of station values
falling outside the interpolation 95% confidenctemal derived from the ISD (Figure 8). For
precipitation, the upper 95% limit is mostly exceddbetween 5-10% of the time, while values
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fall below the lower limit 10-25% of the time, imditing that while the upper limit is a
reasonable estimate, the lower limit is poorly wedi, and that precipitation is frequently
significantly underestimated. For temperaturerelae roughly equal numbers of values falling
above and below the 95% confidence interval, butids precipitation, the number exceeds that
expected. Most stations have at least 10% offddtag outside the confidence interval, with
many stations having more than 25% of values oaitsid interval. There is also a clear north-
south gradient in the percentage of the precipiatalues falling outside the confidence limits,
with the CI underestimation being much larger ia tlorth. The main reason for this is the fact
that there are fewer rain days in the south of pereompared to the north. The error is smaller
when no or little precipitation is observed, conguhto a situation when a lot of precipitation is

observed.

From this analysis, we can conclude that the imetppn standard deviation provided with the
data is a strong underestimation of the actuatpotation error and should be used with care.
Moreover, it has to be taken into account, thattird@idence intervals available with the gridded

data only include interpolation sampling error aadstation and bias errors.

6. Summary and Conclusions

We have analysed the new E-OBS European high-esolgridded dataset of daily minimum,
maximum and mean temperature and precipitationrgetways. First, we assessed the
homogeneity of the gridded data and related thieeédhomogeneity of the station data.
Secondly, we compared the dataset to existing gddthtasets developed with denser station
networks. And finally, we evaluated the accuratthe interpolation standard deviation, a

measure of interpolation error that is providechviite dataset. While the three issues we assess
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do not give a complete overview of the reliabitifythe dataset, they do provide important

additional information for users of the dataset.

The results of the Wijngaard [2003] homogeneitystetiow that there are mapgtential
inhomogeneities present in the gridded dataseereTaire more statistically significant breaks
present in temperature than precipitation data,vétidn the temperature data, there are more
breaks for vDTR than mDTR variables. Inhomogeasitn the gridded data are often related to
inhomogeneities in the stations contributing tovhkie of the grid. However, this relation is not
the same for all areas. Sometimes an area is iogp@neous even if there is only one
inhomogeneous station in the area (e.g. for prtipn in northern Sweden) and in other
occasions many stations are inhomogeneous, bat¢laes not effected (e.g. for temperature in
south-eastern France). The year of the breakhofimogeneous grids generally corresponds to
the year of the break of stations in the surroug@irea, although the correspondence is better for
precipitation than for temperature. We provideatadile that contains, for temperature and
precipitation, information on the grid boxes whtre data are potentially inhomogeneous. This
information will be critical when, for example, f@ming analyses of trends in extremes using
E-OBS. For a future update of the E-OBS datasaeaemmend that the issue of
inhomogeneities is studied thoroughly. A balandehave to be found between the loss of
station data and the introduction of inhomogengitied homogenisation of the station data

should be considered.

When compared to existing high-resolution regiaralded data for the UK, ALPS and Europe
(ELDAS) that are based on much denser station mksy&-OBS shows an excellent
correlation. However, mean absolute errors anmgfgignt, in the order 0.5C for temperature

and greater than 100% for precipitation. For hathables and all skill scores the datasets
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compare worse in areas with more relief. For pitation agreement is in general better in
winter, whereas for temperature agreement is maiady in spring. In the case of precipitation,
E-OBS also shows a negative bias, indicating th@BS tends to be over-smoothed relative to
the high-density datasets. For temperature, E-Sl88/s a small positive bias over quite large
areas, but some scattered areas have a stronggivedgas. Moreover, the E-OBS dataset
compares better to the mean of the variables oéxisting datasets than to the extremes,
although differences are much larger for precimtathan for temperature. Consequently, the
dataset should be used with caution in comparisdQGM outputs, especially with respect to

evaluation of RCM precipitation extremes.

The uncertainty estimates available with the datg represent sampling, or interpolation,
errors. These are calculated by combining errors both parts of the interpolation process,
namely interpolation of the monthly mean (tempegtor totals (precipitation) using thin plate
smoothing splines and the interpolation of dailgraalies using versions of kriging (see Section
2). We evaluated the daily interpolation erroimeates, estimated usingamamotts [2000]
interpolation standard deviation approach. A camspa of these errors with cross-validation
errors shows that for most of Europe cross-valiteérror is positively correlated with
interpolation standard deviation. However, the@iency with which the 95% interpolation
confidence interval is exceeded is much larger thaected, indicating that the interpolation
standard deviation significantly underestimatesatieial interpolation error. The 95%
confidence limits are on average exceeded 25% @métimes even over 50% of the time. In a
future update of the data we recommend that ensestithastic simulations, i.e. a set of
interpolated realisations should be consideredhi®restimation of uncertainties. These have

also been mentioned Hhaylock et al[2008] but have not been implemented due to time
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constraints.Bellerby and Suf2005] andTeo and Grimef2007] suggest short-cuts that should

reduce the computing time required.

The E-OBS dataset is the first publically availatid¢aset that covers the whole of Europe at a
very high spatial resolution for daily data. Howevas this study reveals, there are some
potentially important limitations to the data. ¢mhogeneities are present within the data, the
data show quite large absolute and relative diffees and biases to existing datasets that have
been developed with very dense station networldttaa standard errors delivered with the data
appear to significantly underestimate the truerpdkation error. This will have to be taken into
account when the data are used, e.g. for the di@uaf RCM outputs. Trends analysis may
also be affected by potential inhomogeneities endata. In addition, the underestimation of
extremes within the data may, for instance, infagefuture predictions using RCM outputs
regarding flooding. Moreover, when using the stadcerrors that have been supplied with the
data it has to be taken into account that theseseanly include interpolation sampling errors

and that they are an underestimation of the trrar.er

The E-OBS data will often be the only availableadat for studies of e.g. the comparison of
RCM outputs for the whole of Europe. With the atibn of more data and hence better
availability, reconsideration of how to deal witthbomogeneities in station data and how to
improve the uncertainty estimates the data willrowp in the future. However, users of the data

should take notice of the weaknesses mentionddsipaper and use the data appropriately.
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653 Table 1. The fraction of stations or grids that are usedoljbtful or suspect and the

654 inhomogeneous fraction for each statistical test
655
# stations Overall Fraction Fraction with Breaks
or grids | Useful Doubtful Suspect Von
SNHT | Buishangq Pettitt | Neumann
Wet day Stations 836 0.892 0.044 0.06¢  0.123 0.072 0.114 0870.
fraction  Grids 22176 0.781 0.078 0.140  0.219 0.1640.216 0.166
Stations 472 0.492 0.114 0.39%  0.477 0.422 0.432 4680.
mDTR
Grids 21970 0.464 0.099 0.437 0.515 0.470 0.460 8%0.4
Stations 472 0.555 0.097 0.34B 0.434 0.388 0.400 3810.
T Grids 21970 0.275 0.113 0.612 0.738 0.630 0.580 97.6
656
657
658
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659 Table2. Skill scores for the comparison of the E-OBS deid dataset with the UK, Alps, and
660 ELDAS gridded datasets for the four variables mimm maximum and mean temperature and

661 precipitation. Skill scores have been calculatedefh grid point and are then averaged.

Annual
MAE/ RMSE/
R MAE RMSE CRE CSlI PC
mean mean
UK Minimum temperature 0,984 0,687 n/a 0,895 n/a 0,041 n/a n/a
Maximum temperature 0,991 0,597 n/a 0,780 n/a 0,024 n/a n/a
Mean temperature 0,991 0,517 n/a 0,695 n/a 0,023 n/a n/a
Precipitation 0,916 1,081 0,355 2,170 0,729 0,182 0,836 0,909
Alps Precipitation 0,880 2,253 0,514 5,766 1,325 0,357 0,769 0,897
Eldas Precipitation 0,846 1,159 0,457 2,419 1,009 0,316 0,744 0,874
Winter
MAE/ RMSE/
R MAE RMSE CRE CSl PC
mean mean
UK Minimum temperature 0,971 0,700 n/a 0,918 n/a 0,082 n/a n/a
Maximum temperature 0,977 0,507 n/a 0,680 n/a 0,056 n/a n/a
Mean temperature 0,974 0,533 n/a 0,718 n/a 0,068 n/a n/a
Precipitation 0,925 1,187 0,331 2,227 0,627 0,176 0,856 0,914
Alps Precipitation 0,894 2,013 0,505 5,031 1,274 0,346 0,784 0,906
Eldas Precipitation 0,848 1,256 0,458 2,360 0,926 0,373 0,759 0,869
Spring
MAE/ RMSE/
R MAE RMSE CRE CSlI PC
mean mean
UK Minimum temperature 0,973 0,663 n/a 0,860 n/a 0,069 n/a n/a

Maximum temperature 0,981 0,640 n/a 0,822 n/a 0,051 n/a n/a
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Mean temperature 0,984 0,491 n/a 0,631 n/a 0,039 n/a n/a
Precipitation 0,916 0,893 0,359 1,803 0,730 0,181 0,828 0,908
Alps Precipitation 0,881 2,237 0,514 5,345 1,231 0,365 0,775 0,888
Eldas Precipitation 0,853 1,039 0,465 2,103 0,992 0,338 0,742 0,875
Summer
MAE/ RMSE/
R MAE RMSE CRE CsSl PC
mean mean
UK Minimum temperature 0,955 0,668 n/a 0,866 n/a 0,116 n/a n/a
Maximum temperature 0,970 0,709 n/a 0,896 n/a 0,087 n/a n/a
Mean temperature 0,965 0,520 n/a 0,700 n/a 0,082 n/a n/a
Precipitation 0,898 1,004 0,402 2,136 0,874 0,207 0,807 0,903
Alps Precipitation 0,852 2,531 0,546 6,088 1,385 0,392 0,732 0,878
Eldas Precipitation 0,826 1,026 0,514 2,003 1,334 0,577 0,690 0,870
Autumn
MAE/ RMSE/
R MAE RMSE CRE CSlI PC
mean mean
UK Minimum temperature 0,976 0,720 n/a 0,928 n/a 0,067 n/a n/a
Maximum temperature 0,987 0,518 n/a 0,667 n/a 0,035 n/a n/a
Mean temperature 0,983 0,526 n/a 0,709 n/a 0,042 n/a n/a
Precipitation 0,921 1,243 0,341 2,408 0,681 0,173 0,849 0,912
Alps Precipitation 0,899 2,228 0,495 6,196 1,368 0,326 0,783 0,914
Eldas Precipitation 0,863 1,226 0,431 2,511 0911 0,306 0,765 0,879
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Figure 1. Overall homogeneity, according to the Wijngard,tekthe station network (top) and
the gridded data (bottom) for precipitation (left)d temperature (right). For temperature mDTR

and vDTR are combined, with the most negative autctor the two variables used.

Figure 2. The fraction of stations and grid points with istecally significant (0.01)
inhomogeneity in each year of the dataset. Inhomeiges are calculated for the full 1950-2006

period.

Figure 3. A spatial overview of the skill scores R (-), MARIn), RMSE (mm), CRE (-) and
CSiI for precipitation for the comparison of the B®dataset with the datasets of the UK (top
row), Alps (2% row) and ELDAS (% row) and the UK versus ELDAS (bottom row). MAE /
mean precipitation (-) and RMSE / mean precipita{i) are added to remove the influence of

the average amount of precipitation in a grid oalthe skill score.

Figure4. As
Figure3, but for theskill scores R (-), MAE (°C), RMSE (°C) and CRE f@f minimum (top),

maximum (middle) and mean (bottom) temperaturelfercomparison with the UK dataset.

Figureb5. Spatial pattern of bias in the E-OBS dataset coaethar higher quality data over the
Alps, ELDAS domain and UK, expressed: the percentdglays that E-OBS data are more than
0.1 standard deviations below the higher qualita daibtractedrom the percentage of days the
E-OBS data are more than 0.1 standard deviationest® higher quality data. Thus, a positive
value indicates that E-OBS data tend to be biaseatey than the higher quality data, and vice
versa. Precipitation is shown left, with UK t@dps in the middle and ELDAS at the bottom.
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Temperature (UK only) is shown right, with minimuemperature at the top, maximum

temperature in the middle and mean temperatuteedidttom.

Figure 6. Absolute error in different deciles for each conmaam with existing datasets for
precipitation (left) and temperature (right). I tleft figure red is for the UK, green for the Alps
and blue for ELDAS, in the right figure red is formimum temperature, green for maximum
temperature and blue for mean temperature. The@baksolute error shows the 0"28nedian
and 0.78 percentile, the whiskers show the ¢'Gid 0.95 percentile. Deciles are calculated

for each grid separately.

Figure7. Bivariate histograms showing the joint frequencstritbution of cross validation error
and interpolation standard deviation for precipia{left) and minimum temperature (right).

Both figures are on a log-log scale.

Figure 8. Spatial patterns of the percentage of interpoldttd exceeding the lower (left) and
upper (right) limits of the 95% confidence interf@ precipitation (top) and minimum
temperature (bottom) for all stations. Insets ldigfmistograms of the frequency of the over- or

underestimation of the stations.
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